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Summary 

Through this research, we successfully demonstrated self-healing with submicron and nanoscale 

consitutents.  A summary of the research program is shown in Figure 1. The research was driven by basic 

science and engineering of new processing routes for nanoencapsulation of healing chemistries and 

seamless integration of the self-healing functionality into polymer and polymer composites.  Major 

accomplishments described in this abstract 

include: 

• Identified three promising healing 

chemistries and successfully encapsulated 

the components in submicron capsules. 

•   Functionalized the nanocapsules with a 

silica coating. 

•   Dispersed high concentrations of 

submicron and nanocapsules in epoxy 

• Demonstrated modest healing in bulk 

epoxy specimen. 

•   Successfully integrated nanocapsules on 

glass and fiber surface for composite 

applications. 

• Developed a new protocol and 

demonstrated preliminary fiber/matrix 

interfacial healing during a single fiber 

pullout test. 

 

SIGNIFICANT RESULTS  

1.  Self-Healing Chemistry for the Nanoscale 

 We have identified three potential healing chemistries that can be successfully scaled for 

healing at submicron length scales: (1) Grubbs catalyzed DCPD monomer, (2) one-part solvent-

epoxy, and (3) two-part amine cured epoxy.  We were able to demonstrate healing with the first 

two systems and believe the third chemistry also holds promise. 

 

Fig. 1. Research tasks and integration. 
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1.1 Grubbs Catalyst ROMP Based Healing 

 We have developed a sonication based-emulsion technique to produce DCPD filled UF 

capsules as small as 200 nm in diameter [1].  Capsules containing DCPD monomer were 

prepared by in situ polymerization of urea and formaldehyde using a modified process of Brown 

et al. [2]. The sonication horn of an ultrasonic homogenizer was placed in the solution for 3 

minutes with continuous mixing at 800 RPM.  The resulting capsules with a core material of 

pure DCPD had a mean diameter of 1.56 ± 0.50 μm measured by focused extinction and 1.65 

±0.79 μm via SEM measurements (Fig. 2a).  The mean shell wall thickness was 77 ± 25 nm. 

Through the use of chemical co-stabilizers to limit Ostwald ripening, we were able to reduce the 

capsule diameter even further. Hexadecane significantly reduced the capsule diameter with only 

a small reduction in available healing agent (80% size decrease, 5% healing agent decrease). The 

smallest batch of capsules, had a mean diameter of 220 ± 113 nm measured by SEM, and was 

achieved with 10 wt% hexadecane costabilizer. Images of the nanocapsules show spherical 

capsules, free of surface debris  with well-formed shell walls (Fig. 2b). CHN data was used to 

estimate the DCPD and UF content of the capsules [1]. The average microcapsule DCPD content 

by mass was 78.4%, corresponding to a mean capsule fill percentage of 94% by volume. 

We also developed an encapsulation procedure to reduce the size scale of the Grubbs 

catalyst, while maintaining reactivity.  Using a one-pot synthesis method, solid Grubbs catalyst 

was encapsulated in polystyrene beads, directly followed by silica shell protection.  This method 

enabled functionalization of the particles (similar to the DCPD capsules), thus resulting in better 

dispersion and better stability.  The Grubbs catalyst filled polystyrene particles were less than 

200 nm in diameter (Fig. 2c). NMR and rheology confirmed that the catalyst remained active 

with a gel time similar to that of as-received Grubbs catalyst when mixed into DCPD.   

1.2 One Part Solvent-Epoxy Based Healing 

Microcapsules containing a solvent and reactive epoxy resin hold promise for the 

development of cost-effective, low toxicity, and low flammability self-healing materials [3,4]. 

We have developed a robust in situ encapsulation method for protection of a variety of oil 

soluble solvents and reactive epoxy resins by a thin, polymeric, urea-formaldehyde (UF) shell.  

Capsules as small as 300 nm in diameter were achieved through additional sonication and 

          

                          (a)                                             (b)        (c) 

Fig. 2. (a)  Distribution of 1.5 mm diameter capsules filled with DCPD healing agent, (b) TEM image 

showing the core-shell morphology of the nanocapsules, (c) TEM image of Grubbs catalyst particles 

encapsulated in PS. 
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stabilization procedures [5]. The presence of both the epoxy resin and solvent core components 

was confirmed by differential scanning calorimetry (DSC) measurements, and the relative 

amount of epoxy and solvent in the liquid core was determined by thermal gravimetric analysis 

(TGA).  The capsules were shown to satisfy the requirements for use in self-healing materials 

including thermal stability, the ability to survive composite processing, and efficient in situ 

rupture for delivery of healing agent.  These capsules were used to functionalize high 

performance fibers for interfacial healing studies (Section 3). 

1.3 Two Part Amine-Epoxy Based Healing 

Microencapsulation of a reactive amine represents a leap forward in self-healing chemistry in 

an epoxy matrix.  As most advanced composite materials rely on the ring-opening reaction of 

epoxide with amine, a two-part healing chemistry that incorporates identical material to the 

existing matrix is desirable. Present research demonstrated that an amine phase can be emulsified 

and a thin shell can be formed around the amine droplet.  Microcapsules were isolated and dried 

to a flowable powder capable of curing epoxy ex situ.  Mean capsule diameter was controlled 

between 12-50 μm by agitation rate. Microcapsules were fully characterized for amine content 

and curing behavior.  Dynamic scanning calorimetry of microcapsules with epoxy indicated 25% 

of the capsule mass is chemically available as a curing agent. [6]  Qualitative ex situ healing was 

demonstrated at elevated temperatures.  The capsules were also capable of curing epoxy using a 

solvent-mediated system, where dissolved epoxy is carried to the capsule region and reacts with 

capsule material.  Work is still in progress to establish the healing efficiency of these systems.   

 
2.  Capsule Stabilization and Dispersion in Epoxy 

To stabilize the smaller capsules/particles 

and prevent agglomeration, we developed a 

method to grow a silica shell around the 

PUF capsules.  The silica shell growth 

procedure is based on a fluoride-catalyzed 

regrowth procedure used in literature [7].  

The resulting coated capsules have a silica 

shell that varies in thickness between 20nm 

and 50nm and contains approximately 60 

wt% DCPD.  Uncoated capsules prepared 

similar to the coated capsules contain a 

similar quantity of DCPD.  TEM of capsule 

cross-sections prepared by microtome 

sectioning show a solid silica shell in direct 

contact with the PUF capsule surface (Fig. 

3a).  The DCPD has evaporated, and is thus 

not visible in the cross-section. High 

concentrations of the silica-coated capsules 

were incorporated into an epoxy matrix, 

with excellent dispersion, at up to 20 wt% 

(Fig. 3b).  

 
             (a)         (b) 

Fig. 3. (a) TEM of a capsule cross-section prepared by 

microtome sectioning. The PUF shell is ca. 50 nm 

thick, while the silica coating is20-50 nm thick 

depending on the sample. (b) SEM of 20 wt% silica 

coated, DCPD filled nanocapsules in epoxy. 
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3.  Self-Healing in Bulk Specimens 

Self-healing of these components in 

bulk polymers was evaluated by 

modifying previously developed 

fracture testing protocols developed to 

accommodate the small size of the 

self-healing components. TDCB 

samples prepared based on previous 

work [8] showed no healing because 

the crack size was too large.  

However, by applying force to the 

specimen, the crack width could be 

decreased in some regions.  The 

decrease in crack width was sufficient 

to see a recovery of mechanical 

properties.  SEM of the crack plane 

confirmed that new material had 

deposited during the healing period 

(Fig. 4).  Controls suggested that a 

component of the healing was due to 

catalyst encapsulating polymer 

dissolving in the DCPD and 

depositing in the crack plane.  No 

solvent healing was observed between 

DCPD and excess groups in the epoxy 

confirming earlier work [3,4].   

 

4.  Self-Healing Interfaces 

Although healing was observed in bulk specimens, the nanoscale constituents are better suited to 

healing more localized crack damage.  Fiber/matrix interface debonding is a critical reliability 

issue and presents an ideal target for our healing systems.  We developed a new protocol to 

investigate recovery of interfacial shear strength in model single fiber composites.  Microbond 

specimens consisting of a single self-healing functionalized fiber embedded in a microdroplet of 

epoxy (Fig. 5), were used to test the virgin and healed fiber-matrix interfacial properties.  

 A method was developed for 

sequestration of DCPD healing agent filled 

microcapsules and Grubbs’ catalyst to the 

reinforcement-matrix interface. Figure 6 

shows standard glass fibers functionalized 

with urea-formaldehyde (UF) capsules 

containing monomeric DCPD healing agent. 

The extent of this functionalization was 

defined as , the number of capsules per 

surface area of the fiber.  

Fig. 4. Load Displacement curve for a sample 

containing 15wt% capsules and 7wt% catalyst 

particles(a).  The surfaces of the crack plane of these 

samples is observed before (b) and after (c) healing.  

 
 
Fig. 5.  Schematic of microbond specimen geometry 

for single fiber interfacial healing studies. 
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 Using the microbond test configuration 

shown in Fig. 5, damage was initiated at 

the fiber-matrix interface, rupturing the 

attached capsules and releasing the healing 

agent into the crack. A custom-made single 

fiber-testing frame was built and mounted 

under an optical microscope to provide 

simultaneous load-displacement and direct 

optical observation of crack propagation 

during debonding and subsequent healing 

events. Representative pullout curves are 

shown in Fig. 7a, including the virgin 

curve (blue), the healed curve (red) 

demonstrating recovery of interfacial shear 

strength, and a plain glass fiber control 

sample (black). Figure 7b summarizes the 

achieved healing results in terms of healing 

efficiency, defined as the ratio of peak 

interfacial shear strength of the healed 

sample to that of the virgin sample, for 

DCPD-Grubbs’ single fiber self-healing.  

A maximum healing efficiency of 0.44 was 

achieved for self-healing (SH) samples 

functionalized with DCPD monomer filled 

capsules ( =0.23) and Grubbs’ catalyst 

(Fig 6b).  These results were published in 

Advanced Functional Materials and 

featured on the cover [9]. 

While these results with DCPD healing agent and Grubbs’ catalyst are promising, the 

interfacial bond strength between polyDCPD and glass and polyDCPD and epoxy is relatively 

weak. The new resin-solvent self-healing system described earlier holds great promise to 

increase the critical interfacial bond strength, simplify the healing chemistry to a one-part 

system, and enable healing with nanoscale capsules. For resin-solvent interfacial self-healing, 

capsules containing a one-part resin-solvent self-healing blend were successfully functionalized 

onto the surface of a standard glass fiber. Healing agent release into the crack plane was 

triggered by interfacial damage, similar to the DCPD-Grubbs’ interfacial self-healing.  Healing 

efficiencies of over 50% have been already achieved with this new system.  Optimization of the 

resin to solvent ratio and capsule concentration are in progress. 

 

 

 
 

Fig. 6.  (a) SEM micrographs of fibers functionalized 

with Grubbs’ catalyst and with various capsule area 

densities,  [Capsules μm 2 ], 
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(a) (b) 

Fig. 7 (a) Representative pullout curves showing the virgin curve (blue), the healed curve (red), 

and the control healed curve of a plain E-glass fiber. (b) Healing efficiency DCPD-Grubbs’ 

catalyst coated fibers ( ), plain fiber control ( ), catalyst only control ( ), and capsule only control 

( ). Vertical error bars represent 95% confidence interval. 
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